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ABSTRACT

Context. Numerical simulations of magneto-convection have greatly expanded our understanding of stellar interiors and stellar mag-
netism. Recently, fully compressible hydrodynamical simulations of full-star models have demonstrated the feasibility of studying
the excitation and propagation of pressure and internal gravity waves in stellar interiors, which would allow for a direct comparison
with asteroseismological measurements. However, the impact of magnetic fields on such waves has not been taken into account yet in
three-dimensional simulations.
Aims. We conduct a proof of concept for the realization of three-dimensional, fully compressible, magneto-hydrodynamical numerical
simulations of stellar interiors with the RAMSES code.
Methods. We adapted the RAMSES code to deal with highly subsonic turbulence, typical of stellar convection, by implement-
ing a well-balanced scheme in the numerical solver. We then ran and analyzed three-dimensional hydrodynamical and magneto-
hydrodynamical simulations with different resolutions of a plane-parallel convective envelope on a Cartesian grid.
Results. Both hydrodynamical and magneto-hydrodynamical simulations develop a quasi-steady, turbulent convection layer from ran-
dom density perturbations introduced over the initial profiles. The convective flows are characterized by small-amplitude fluctuations
around the hydrodynamical equilibrium of the stellar interior, which is preserved over the whole simulation time. Using our com-
pressible well-balanced scheme, we were able to model flows with Mach numbers as low asM ∼ 10−3, but even lower Mach number
flows are possible in principle. In the magneto-hydrodynamical runs, we observe an exponential growth of magnetic energy consistent
with the action of a small-scale dynamo. The weak seed magnetic fields are amplified to mean strengths of 37% relative to the kinetic
equipartition value in the highest resolution simulation. Since we chose a compressible approach, we see imprints of pressure and
internal gravity waves propagating in the stable regions above and beneath the convection zone. In the magneto-hydrodynamical case,
we measured a deficit in acoustic and internal gravity wave power with respect to the purely hydrodynamical counterpart of 16% and
13%, respectively.
Conclusions. The well-balanced scheme implemented in RAMSES allowed us to accurately simulate the small-amplitude, turbulent
fluctuations of stellar (magneto-)convection. The qualitative properties of the convective flows, magnetic fields, and excited waves
are in agreement with previous studies in the literature. The power spectra, profiles, and probability density functions of the main
quantities converge with resolution. Therefore, we consider the proof of concept to be successful. The deficit of acoustic power in the
magneto-hydrodynamical simulation shows that magnetic fields must be included in the study of pressure waves in stellar interiors.
We conclude by discussing future developments.
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1. Introduction

Thermal turbulent convection is one of the fundamental pro-
cesses in stellar physics. It is responsible for the outward trans-
port of the energy generated in the core, but it also affects the
structure, the dynamics, and the evolution of the star. In our Sun,
for example, the convective envelope shapes and influences the
observable features and activity on the solar surface and in the
overlying atmosphere (Nordlund et al. 2009; Stein 2012). Core
convection in massive stars might impact the star’s lifetime by
bringing fresh fuel into the core as the convective cells overshoot
into the stable radiative zones above it (Salaris & Cassisi 2017),
and convective mixing in asymptotic giant branch (AGB) stars
provides a rich environment for nucleosynthesis (Herwig 2005).

Stellar magnetism is also linked to turbulent convective mo-
tions in stellar interiors. A small-scale dynamo operating in the
near-surface turbulent convection zone of the Sun is possibly
at the origin of the small-scale magnetic fields permeating the
quiet photosphere (Lites et al. 2014; Rempel 2018), while the
cyclic regeneration of the solar large-scale magnetic field proba-
bly stems from the interplay between deep-convection zone tur-
bulence, differential rotation, and magnetic flux transport (Char-
bonneau 2013, 2020). Moreover, convective cores in A- and
B-type stars are likely able to develop a dynamo action (Brun
et al. 2005; Augustson et al. 2016) and all low-mass stars appear
to host dynamo-produced, small-scale, surface magnetic fields
(Langer 2014).
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Finally, turbulent convective envelopes and cores also cause
the excitation and propagation of a rich spectrum of oscillation
modes in stellar interiors (Houdek & Dupret 2015). With the
advent of asteroseismology, it is possible to determine proper-
ties of stellar internal structures from the observation of global
oscillations across the Herzsprung-Russell diagram (Hekker &
Christensen-Dalsgaard 2017; Basu & Hekker 2020; Aerts 2021).
It is therefore crucial to understand and characterize the forma-
tion and propagation of these modes, in particular in the presence
of magnetic fields.

The classical modeling of convection is based on mixing
length theory (MLT, Böhm-Vitense 1958). However, large-scale
(magneto-)hydrodynamical simulations of solar and stellar con-
vection are nowadays employed to include multidimensional dy-
namical processes such as overshooting, oscillations, and dy-
namo action (see, e.g., Freytag et al. 2002, 2017; Browning et al.
2004, 2006; Brun et al. 2004; Herwig et al. 2006; Meakin & Ar-
nett 2007; Miesch et al. 2008; Brun & Palacios 2009; Ghizaru
et al. 2010; Rempel 2014; Hotta et al. 2014, 2015; Beeck et al.
2015; Tremblay et al. 2015; Augustson et al. 2016; Käpylä et al.
2017; Salhab et al. 2018; Edelmann et al. 2019; Andrassy et al.
2020; Horst et al. 2020, 2021; Käpylä 2021).

Such simulations can be challenging for common numerical
techniques as stellar convective flows are often highly subsonic
and characterized by small perturbations around a hydrostatic
equilibrium. In order to alleviate the time-stepping constraints
imposed by the low-Mach number regime, numerical schemes
solving the Navier-Stokes (or MHD) equations in the anelas-
tic approximation are typically favored (see Kupka & Muthsam
2017, for a review).

Although internal gravity waves are preserved in this ap-
proach, the physics of pressure waves are precluded and an ar-
tificial viscosity is required to achieve numerical stability. Fully
compressible simulations are therefore necessary to examine the
properties and the dynamics of the complete spectrum of excited
waves in stellar interiors, as well as the coupling between these
modes (Beck et al. 2011). The computational cost of these sim-
ulations is higher than the anelastic ones, but Horst et al. (2020,
2021) recently demonstrated the feasibility of this approach in
two and three dimensions.

The next logical step is to extend the fully compressible
framework to magnetized stars. Such simulations would allow
to study the interaction between convective turbulent motions,
magnetic fields, and global oscillations. In particular, it would
enable a numerical analysis of the imprints of magnetic fields in
global oscillations, which could be used to assess the presence
of strong magnetic fields hidden in stellar interiors from astero-
seismologic measurements (Fuller et al. 2015; Gomes & Lopes
2020).

Therefore, we test the feasibility of three-dimensional, fully
compressible, magneto-hydrodynamical numerical simulations
of stellar convection. This work is hence a proof of concept:
we intend to present and validate our approach by performing
a convergence study and comparing qualitatively the results to
previous works on stellar convection, dynamo action, and wave
propagation. The physics and the numerical setup are therefore
intentionally simplistic, and they will be enhanced and addressed
in future works.

This paper is organized as follows: in Sect. 2 we briefly de-
scribe the code, the numerical techniques, and define the initial
conditions of our simulations. The results are presented and dis-
cussed in Sect. 3, while in Sect. 4 we summarize the main aspects
of our work and we give an outlook for future developments.

2. Numerics

We ran our numerical simulations with the Adaptive Mesh Re-
finement (AMR) code RAMSES (Teyssier 2002), which solves
the compressible equations of ideal magneto-hydrodynamics
(MHD) in presence of gravity by employing a MUSCL-Hancock
scheme with constrained transport on a finite volume Cartesian
mesh (Teyssier et al. 2006; Fromang et al. 2006). We used a
HLLC and a HLLD approximate Riemann solver for purely hy-
drodynamical and MHD simulations, respectively. The advan-
tage of this type of solvers is that they resolve contact disconti-
nuities explicitly, which is particularly important in highly sub-
sonic flows to reduce numerical diffusivity. RAMSES makes in-
tensive use of the Message Passing Interface (MPI) library and
it can therefore be used on massively parallel architectures. It
is designed for high-resolution numerical simulations of a wide
range of astrophysical problems, such as cosmology, galaxy and
structure formation and evolution, and star formation.

However, the features of convective flows in stars pose a
number of supplementary challenges that numerical schemes
need to overcome. The pressure gradients in stellar interiors are
balanced by gravity so that the whole system can attain a station-
ary configuration, that is hydrostatic equilibrium. Turbulent ther-
mal convection is then often characterized by small-amplitude
perturbations close to the equilibrium profile. As a consequence,
we sought a numerical scheme that is able to preserve the hy-
drostatic equilibrium profiles in nonperturbed setups. Moreover,
the typical velocities arising from turbulent convection are ex-
pected to be highly subsonic, which can be troublesome for
time-explicit schemes. Therefore, we had to adapt the numeri-
cal scheme of RAMSES to deal with highly subsonic, close to
hydrostatic equilibrium turbulent flows, and we achieved that by
implementing a well-balanced method.

2.1. Well-balanced scheme

A well-balanced scheme numerically ensures the dynamical
preservation of an equilibrium state by implicitly including it
in the underlying discrete set of equations (Greenberg & Leroux
1996). Such methods have been mainly developed in the context
of shallow-water simulations (see, e.g., Noelle et al. 2007), but
they are also becoming popular to tackle astrophysical problems
(see, e.g., Freytag et al. 2012; Käppeli & Mishra 2016; Veiga
et al. 2019; Edelmann et al. 2021).

For the sake of simplicity, let us consider the one-
dimensional Euler-Poisson set of equations,

∂ρ

∂t
+
∂ (ρu)
∂x

= 0 ,

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p
∂x

= −
∂φ

∂x
,

∂p
∂t

+ u
∂p
∂x

+ γp
∂u
∂x

= 0 , (1)

where ρ is the density, u is the velocity, p is the thermal pressure,
φ is the gravitational potential, and γ is the adiabatic index of the
ideal gas equation of state. The hydrostatic equilibrium equation
then reads,

∂p
∂x

= −ρ
∂φ

∂x
. (2)

Standard finite volume methods struggle to accurately describe
convective flows in stratified fluids because a discrete version
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of Eq. (2) may not be preserved. Hence, truncation errors in-
troduced in the supposedly equilibrium states are interpreted
as propagating waves by the numerical solvers. These spurious
waves can conceal the small perturbations of interest, disrupt the
equilibrium states, and even undermine the numerical stability
of the simulation. The numerical resolution required to prevent
the truncation errors from spoiling the results would make the
simulations easily impractical.

A possible solution is to impose the hydrostatic equilibrium
given by Eq. (2) directly in the set of equations governing the
dynamics, that is Eq. (1). We separate the primitive variables of
the problem into equilibrium, stationary states and dynamical
perturbations,

ρ = ρ̃ + ρ′ , p = p̃ + p′ , u = u′ , (3)

where the equilibrium states of density and pressure, ρ̃ and p̃,
exactly satisfy the hydrostatic equilibrium, Eq. (2), while the ve-
locity field u is made up of perturbations only since ũ = 0. With
this separation at hand, we can rewrite the Euler-Poisson equa-
tions as,

∂ρ′

∂t
+
∂ (ρu)
∂x

= 0 ,

∂u
∂t

+ u
∂u
∂x

+
1
ρ

∂p′

∂x
= −

ρ′

ρ

∂φ

∂x
,

∂p′

∂t
+ u

∂p
∂x

+ γp
∂u
∂x

= 0 , (4)

where the hydrostatic equilibrium in stationary regimes, that is
where ρ′, p′, u = 0, is explicitly preserved.

Well-balanced schemes have already been used in the context
of stellar convection by Hotta et al. (2019), Horst et al. (2020),
Horst et al. (2021), and Edelmann et al. (2021), for example.
For this work, we modified both the hydrodynamical and MHD
numerical solvers of RAMSES to account for a well-balanced
version of the evolution equations. Indeed, we extended the
well-balanced methodology also to the equations of ideal MHD,
where we assume the equilibrium state to be characterized by
B̃ = 0. Hence, magnetic fields are treated as pure perturbations,
B = B′, and they do not modify the initial hydrostatic equilib-
rium, Eq. (2). Moreover, we solve for the conservation equation
of specific entropy s = p/ργ instead of total energy, that is,

∂s
∂t

+ u
∂s
∂x

= 0 . (5)

As a consequence, the total energy of the system may not be
exactly conserved. On the other hand, we can accurately fol-
low the dynamics of entropy perturbations which stem from the
convective flows in adiabatic stratifications. The validity of this
approach is guaranteed by the highly subsonic nature of typi-
cal stellar convective flows, where shocks are essentially absent
(Woodward et al. 2015).

2.2. Simulation setup

We aim to test our code on a simple but realistic, plane-parallel,
stellar convective region. We chose to follow the initial setup
presented by Herwig et al. (2006), where an intershell of a typi-
cal low-mass AGB star near the He shell flash luminosity peak is
modeled. The simulation box covers a cubic domain of dimen-
sions x, y, z ∈ [0, L], where L = 11.0 Mm. This box is located
at a radius of 7.51 Mm of a stellar model, with main-sequence
initial mass of 2 M� and metallicity Z = 0.01, which undergoes
its second-to-last thermal pulse (Herwig & Austin 2004).

Table 1. Initial conditions of the He shell flash convective region model.

Bottom domain Convection zone Top domain
z 0.00 1.64 × 108 7.77 × 108

ρ 6.13 × 105 1.17 × 104 9.15 × 102

p 5.14 × 1020 1.77 × 1020 2.51 × 1018

s 9.81 × 108 1.19 × 109 1.19 × 109

T 1.40 × 108 2.47 × 108 4.53 × 107

Γ 1.20 1.67 1.01

Notes. The values of height z, density ρ, pressure p, specific entropy s,
temperature T , and polytropic index Γ refer to the bottom of the respec-
tive domains and are given in cgs units.

The box is divided vertically in three domains which approx-
imate the stellar stratification: a bottom stable region that extends
up to z = 1.64 Mm, a convection zone in the middle, and an up-
per stable region from z = 7.77 Mm to the top boundary. We
initialized each domain with a polytropic stratification in hydro-
static equilibrium. The properties of the stratification at the bot-
tom of each domain, as well as the respective polytropic indices,
are given in Table 1. The corresponding equilibrium profiles for
density, pressure, and specific entropy are shown in Fig. 1. We
also assumed constant gravity directed downward along the ver-
tical axis (z) with value g = 107.7 cm s−2 and a mono-atomic
ideal gas with adiabatic index γ = 5/3 and equation of state

p = (γ − 1) ρ
(
e −

1
2

u2
)
, (6)

where e is the specific total energy. For more information about
the stellar model, the reader can refer to Herwig et al. (2006).

If the simulations are initialized with the equilibrium pro-
files of Fig. 1, the code is able to preserve the initial state indef-
initely up to machine precision thanks to the implemented well-
balanced scheme. Hence, to set off convection, we introduced
random density perturbations δρ of the order δρ/ρ̃ ∼ 10−2 in
every grid cell within 1 Mm from the bottom of the convection
zone.

Turbulent convective motions are then sustained by nuclear
reactions heating at the bottom and radiative cooling at the top,
which we modeled by adding and removing energy in two bands
of thickness ∆z = 0.5 Mm at the bottom and top, respectively,
as shown in gray in Fig. 1. We note that Herwig et al. (2006)
did not include radiative cooling, therefore our setup resembles
that of surface convection. We assumed constant and equal vol-
umetric heating and cooling rates given by ė = ε̇0 ρ0, where
ε̇0 = 2 × 1010 erg g−1 s−1 and ρ0 is the density at the base
of the convection zone given in Table 1. Consequently, the en-
ergy flux at the bottom of the convection zone is F = ė∆z =
1.17 × 1022 erg s−1 cm−2. This value accounts for the integrated
amount of energy released according to the stellar model and
corresponds to a stellar luminosity of L = 3.21 × 107 L�. We
note that the stellar luminosity is often boosted by several orders
of magnitude in anelastic numerical simulations to balance the
effect of high artificial viscosities (see, e.g., Rogers et al. 2013).
Since we are using a fully compressible approach, we can stick
to more realistic values of L.

We ran hydrodynamical (HD) and magneto-hydrodynamical
(MHD) numerical simulations of the convective envelope de-
scribed above. In both cases, we used the well-balanced MHD
solver of RAMSES to allow for a direct comparison between the
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Fig. 1. Initial and equilibrium profiles of density ρ̃, pressure p̃, and spe-
cific entropy s̃. Black dotted lines delimit the convection zone, while the
gray areas represent the heating (bottom) and cooling (top) layers.

two. The hydrodynamical simulations are initialized with B =
(0, 0, 0) G, ensuring that the magnetic field strength will remain
zero everywhere throughout the simulation. For the magneto-
hydrodynamical cases, we set a constant, homogeneous, and hor-
izontal (along the x axis) magnetic field of strength B0 = 103 G
in the convection zone alone. In the stable domains instead,
B = (0, 0, 0) G. This configuration preserves exactly the con-
straint ∇ · B = 0. Moreover, the initial magnetic field is weak
enough for a turbulent small-scale dynamo in the convection
zone to amplify it significantly, as the expected equipartition
value of the magnetic field strength for this setup is Beq ∼

108 G. We adopted fixed boundary conditions in the vertical di-
rection by forcing the hydrodynamical variables to follow the
polytropic equilibrium profiles, while the magnetic fields are
forced to be zero in the ghost cells. The lateral boundary con-
ditions are periodic for all variables. We ran both hydrodynam-
ical and magneto-hydrodynamical simulations with resolutions
N = 643, 1283, 2563, and 5123. We identify the different simu-
lations by their type and resolution (e.g., HD_256). In this study,
we did not use the AMR capabilities of RAMSES. Therefore the

grid is equidistant in each direction with cell sizes ranging from
21 km to 172 km.

3. Results and discussion

In this section, we present and discuss the results of our simula-
tions. We focus on the onset of convection, on the turbulent am-
plification of the magnetic energy, and on the general properties
of the convective flows and magnetic fields. Finally, we inves-
tigate the propagation of pressure and internal gravity waves in
the stable regions.

3.1. Onset of convection

We start by analyzing the onset of convection in the hydro-
dynamical simulations, HD_64, HD_128, HD_256, and HD_512,
which we ran for a total of 2 000 s physical time. We define the
convective turnover time scale as,

τconv =
2LCZ

vconv
∼ 1 000 s , (7)

where LCZ ∼ 6 Mm is the height of the convection zone and
vconv ∼ 1.2 × 106 cm s−1 is the characteristic convective velocity
(see Sect. 3.3). Hence, our hydrodynamical simulations cover ∼
2 convective turnover times.

Figure 2 shows three vertical sections of the temperature
fluctuations, defined as T ′ = T − T̃ , at times t = 100, 400,
and 1 000 s, respectively, for the HD_512 simulation. Small-scale
thermal convective instabilities developing from the initially per-
turbed cells can be seen at time t = 100 s. These finger-like struc-
tures rise through the convection zone at slightly higher temper-
atures than the equilibrium values, on the order of ∼ 0.1 %. The
growth of these instabilities also excite small amplitude pressure
waves that sweep the convection zone and reach the top stable
layer. These waves induce tiny perturbations in the equilibrium
profiles, that are not visible in the left panel of Fig. 2 but seed a
second cascade of thermal convective instabilities. This cascade
is driven by the external radiative cooling layer, as we can see
in the middle panel of the same figure, and it is characterized by
descending turbulent filaments with negative temperature fluc-
tuations around the equilibrium profile (see, e.g., Viallet et al.
2013).

After t ∼ 1 000 s, we attain a fully developed convection
zone, which is maintained thereafter by the balance between
external cooling and heating. Indeed, when the rising plasma
heated at the bottom reaches the top of the convection zone,
it is cooled down and initiates a turbulent downflow (see right
panel of Fig. 2). The large-scale structure of the flow is there-
fore granular-like, with large and hot slowly uprising plumes
surrounded by narrow and cold filamentary downflows.

In Fig. 3 we show a horizontal section of the vertical veloc-
ity vz and of the temperature fluctuations T ′ near the top of the
convection zone at t = 1 000 s. A granulation pattern, typical of
surface convection (see, e.g., Stein & Nordlund 1998), is clearly
observable with the central granule having an approximate di-
ameter of ∼ 5 Mm. The large-scale convective motions buffet the
stable plasma in the bottom and top stable layers, exciting there
different oscillation modes that are visible as horizontally ex-
tending temperature fluctuations in the central and right panels of
Fig. 2. We address the nature of these oscillations in Sect. (3.4).

It is important to notice that the dynamical fluctuations char-
acterizing the convective region are small if compared to the
equilibrium profiles values. Figures 2 and 3 show temperature
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Fig. 2. Temperature fluctuations T ′ in a vertical section of the HD_512 simulation at t = 100 s (left), t = 400 s (middle), and t = 1 000 s (right). The
vertical section is taken at y = 3.43 Mm. Black dotted lines indicate the boundaries of the convection zone.
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Fig. 3. Horizontal sections of the vertical velocity vz (top) and temper-
ature fluctuation T ′ (bottom) in the upper layers of the convection zone
(z = 7.4 Mm). The snapshot is taken from the HD_512 simulation at
t = 1 000 s.

fluctuations with typical values around 3 orders of magnitude
smaller than the equilibrium values in the convection zone. Sim-
ilar amplitudes are also valid for the density and pressure per-

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t [103 s]
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1016

E
K

[e
rg

cm
3 ]
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Fig. 4. Time evolution of the mean turbulent kinetic energy density EK
in the convection zone for the four hydrodynamical (HD) simulations.

turbations, while the typical vertical velocities at the top of the
convection zone are 2 orders of magnitude smaller than the lo-
cal sound speed cs. Therefore, the well-balanced scheme imple-
mented in the code and presented in Sect. (2.1) is crucial to cor-
rectly capture the dynamics of this problem.

Figure 4 shows, for the four hydrodynamical simulations,
the time evolution of the mean turbulent kinetic energy density,
EK = 1

2ρv2
rms, where vrms is the root-mean-squared (rms) tur-

bulent three-dimensional velocity field strength. Since the two
stable layers present no significant turbulent motions, we restrict
the computation of EK to the convection zone alone. The on-
set of convection is represented by an initial exponential growth,
which lasts between ∼ 250 s and ∼ 1 000 s, depending on the res-
olution. Then, a quasi-steady state is reached, characterized by
a quasi-constant mean turbulent kinetic energy density. The runs
HD_128, HD_256, and HD_512 reach a mean turbulent kinetic
energy density of around 1016 erg cm−3, while the low resolution
one, HD_64, stabilizes around a slightly lower value. We notice
long lived fluctuations in the quasi-steady state mean kinetic en-
ergy density that are due to the episodic and large-scale nature
of the flow in the convection zone (Meakin & Arnett 2007).

The growth rate of the mean kinetic energy density seems
to decrease with increasing resolution: the low-resolution simu-
lations (HD_64 and HD_128) show a fast and sharp evolution to
a quasi-steady state, while a smooth and slower growth charac-
terizes the high-resolution ones (HD_256 and HD_512). We can
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the four HD simulations in the quasi-steady state regime. The profiles
are obtained by averaging the power spectrum profiles over the last 10
snapshots of each simulation, that is between t = 1 500 s and t = 2 000 s.

qualitatively explain this difference with the transition between
initial instabilities and large-scale convective flows. In fact, the
thermal convective instabilities at the origin of convection form
at the smallest scales in the simulation, since the random per-
turbations in density are introduced at the grid-size level. On
the other hand, the kinetic energy dominant structures are the
large-scale ones, that is plumes and downflows. This results in
an apparent slower growth since the smaller the initial scale of
the turbulence, the longer it will take to form steady state, large-
scale convection.

The transition process between small and large scales can
also be observed in Fig. 5, where we show the time evolution
of the turbulent kinetic energy density power spectra, ÊK, for
the four hydrodynamical simulations. We notice that in the first
stages of the simulations (light blue), the peaks of the various
power spectra are found at large wavenumber k, that is at small
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Fig. 7. Time evolution of the mean turbulent kinetic energy density
EK (blue) and of the mean magnetic energy density EM (red) in the
convection zone for the four magneto-hydrodynamical (MHD) simula-
tions. Dashed lines represent exponential fits obtained with the kine-
matic growth rates γK listed in Table 2. The top panel is a zoom-in on
the first 20 000 s of the turbulent kinetic energy evolution.

Table 2. Kinematic growth rates γK and ratio between saturated rms
magnetic field strength Brms and equipartition value Beq for the MHD
simulations.

MHD_64 MHD_128 MHD_256 MHD_512

γK [10−3 s−1] 0.74 2.35 4.83 8.87
Brms/Beq 0.15 0.25 0.30 0.36

Notes. The growth rates are computed by fitting the magnetic energy
densities over the first 8 snapshots of each simulation, while the ratios
are averaged over the final snapshots of each simulation where the mag-
netic energy does not show any significant growth.

scales in physical space. As the simulations evolve, the total ki-
netic energy densities grow and the peaks of the power spectra
shifts towards small wavenumbers.

When the quasi-steady state is reached (dark blue profiles),
the energy cascade follows a Kolmogorov power law with in-
dex −5/3 from the steady state energy peak up to the dissi-
pation scale in all panels of Fig. 5. The same can be observed
in Fig. 6, where we compare the average kinetic energy power
spectra during the quasi-steady state phase between the differ-
ent runs. The better the spatial resolution, the larger the range
where the Kolmogorov cascade is well reproduced. The quasi-
steady state energy peak instead is found around k ∼ 1 Mm−1 for
all resolutions. This value corresponds to the typical size of the
large-scale uprising convective plumes observed in Fig. 3, that is
l = 2π/k ∼ 6 Mm.
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Fig. 9. Comparison between the power spectra of the turbulent ki-
netic energy (blue) and magnetic energy (red), ÊK and ÊM, for the four
magneto-hydrodynamical (MHD) simulations after saturation of the mag-
netic field. The average quasi-steady state kinetic energy power spec-
trum for the hydrodynamical simulation HD_512 is shown in green.

3.2. Small-scale dynamo

In this section we present the magneto-hydrodynamical simula-
tions MHD_64, MHD_128, MHD_256, and MHD_512.

Figure 7 shows the time evolution of the mean turbulent ki-
netic energy density EK in blue, and of the mean magnetic en-
ergy density EM = B2/8π in red, for the four simulations. Both
energy densities are computed in the convection zone alone. The
length of the simulations decreases with resolution because of
the increase of computational cost. Nevertheless, we ran each
simulation long enough for the magnetic field to be amplified
and attain saturation. Indeed, while convection develops and

reaches a quasi-steady state in a much shorter time scale, we
observe in all four simulations a slower kinematic and a satu-
ration phase: first the magnetic energy grows exponentially as
EM ∼ exp (γKt), where γK is the kinematic growth rate, and then
it reaches a quasi-constant value.

The different slopes show how the exponential growth de-
pends on resolution, which is compatible with the action of a
small-scale dynamo. In the first row of Table 2 we show the kine-
matic growth rates γK of the different simulations. We find that
the kinematic growth rate scales with resolution as γK ∼ ∆x−1.2

if we include all four simulations. However, the low-resolution
simulation (MHD_64) is not capturing all the dynamical scales
of convection, as we have seen in Sect. 3.1. If we consider
only runs MHD_128, MHD_256, and MHD_512, the growth rate is
γK ∼ ∆x−1.3. This result, which is consistent with what Pietar-
ila Graham et al. (2010), Rempel (2014), and Riva & Steiner
(2022) found for small-scale dynamo simulations of the quiet
Sun magnetism, is very puzzling and in contrast with Kazant-
sev’s dynamo theory prediction of γK ∼ ∆x−2/3.

The kinematic phase comes to an end when the mag-
netic field strength approaches the equipartition value, Beq =√

4πρvrms. At this stage, the magnetic fields are strong enough
to start back-reacting into the plasma dynamics by means of the
Lorentz force. The mean magnetic energy eventually saturates
and each simulation reaches a magneto-convective quasi-steady
state. Typical magnetic field strengths in the convection zone at
this stage are in the order of B ∼ 108 G. The ratios between the
rms magnetic field strength Brms and the equipartition magnetic
field strength Beq during the saturation phase are shown in Ta-
ble 2 and grow with increasing spatial resolution.

We show the time evolution of the turbulent kinetic and mag-
netic energy power spectra in Fig. 8. We notice that the magnetic
field strength is more efficiently amplified at small scales. During
the kinematic phase (light red) in fact, the larger the spatial reso-
lution, the more the peak of the magnetic energy power spectrum
is shifted towards large k. In an ideal Kazantsev’s dynamo, the
magnetic energy power spectra should follow a power-law with
index 3/2 during the kinematic phase (Brandenburg & Subrama-
nian 2005). In our case, the magnetic energy power spectra fol-
low the Kazantsev’s prediction only during the very early times
of the kinematic phase. However, as they approach the saturation
phase, they do not seem to follow such a profile.

As the simulations evolve, the magnetic fields become dom-
inant over the kinetic energy density at large k for all the reso-
lutions except the MHD_64. The crossover scale is found around
k ∼ 10 Mm−1 (l ∼ 2 Mm). The transition to super-equipartition
of the magnetic fields at large k coincides with a suppression
of kinetic power at the same scales, which follows from the
Lorentz-force feedback. Consequently, the kinetic power spectra
profiles deviate from the Kolmogorov power law for k & 3 Mm−1

(l ∼ 0.5 Mm). We can appreciate the difference to the hydro-
dynamical simulation HD_512 power spectrum which is plot-
ted in green in Fig. 5. Approaching the saturation phase (dark
red), the magnetic energy spectrum peaks shift towards smaller
wavenumbers and finally stabilizes around k ∼ 3 Mm−1, that
corresponds to magnetic structures in physical space of size
l ∼ 0.5 Mm.

In Fig. 9 we show the kinetic and magnetic power spectra
for the last snapshot of the four simulations. We notice that
MHD_128, MHD_256, and MHD_512 yield very similar results in
the respective energy injection and inertial ranges, while the low-
resolution simulation, MHD_64, presents lower profiles for both
kinetic and magnetic spectra at all scales. The kinetic energy
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Fig. 10. Vertical sections of the temperature fluctuations T ′ (left), vertical velocity vz (middle), and vertical magnetic field Bz (right). To enhance
the visibility of the perturbations, each quantity is scaled by its mean rms value at each height z. The sections are taken from the simulation
MHD_512 at t = 5 000 s and y = 2.34 Mm. Black dotted lines indicate the boundaries of the convection zone.

power spectra of the MHD simulations clearly deviate from the
hydrodynamical analog, HD_512, shown in green. The suppres-
sion of kinetic energy is evident at around the injection scale
(k ∼ 1 Mm−1) and the crossover scale (k ∼ 10 Mm−1). The
power spectra evolution and steady state configuration for the
high-resolution simulations are in qualitative agreement with the
results obtained by Rempel (2014) and Hotta et al. (2015) for
small-scale dynamo studies in the solar convection zone. There-
fore, the exponential growth of the magnetic field energy in our
simulations is compatible with the action of a turbulent small-
scale dynamo.

In Figure 10 we show a vertical section of the temperature
fluctuations T ′, vertical velocity vz, and vertical magnetic field
Bz for the MHD_512 simulation in the saturated phase. To en-
hance the visibility of the perturbations, we scaled each quan-
tity by their mean rms value at each height z. However, in the
stable regions where the magnetic field is very weak, spurious
signals arise where Bz,rms ∼ 0 G. Therefore we masked out the
regions where Bz,rms < 1 G in the third panel. For the same snap-
shot, we also plot a horizontal section of vertical velocity vz and
vertical magnetic field Bz close to the top the convection zone
(z = 7.4 Mm) in Fig. 11.

The large-scale structures of the convective flow are the same
ones we found in the hydrodynamical simulations: large and
slowly ascending convective plumes surrounded by cold and nar-
row downflows, as we can see in the left and middle panels
of Fig. 10 and in the top panel of Fig. 11. Moreover, as for the
hydrodynamical simulations, we observe oscillating patterns in
temperature and vertical velocity in the stable layers that hint to
the presence of waves propagating there.

In the right panel of Fig. 10, we see that the vertical magnetic
field is characterized by small-scale filaments with mixed polar-
ity. The typical thickness of these filaments is l ∼ 0.5 Mm, which
corresponds to the wavenumber (k ∼ 3 Mm−1) of the peaks in the
magnetic energy power spectra seen in Fig. 5 and Fig. 6. Strong
magnetic fields are found preferentially in intergranular down-
flows, as it can be seen in the bottom panel of Fig. 11 for the top
of the convection zone. We also notice the presence of magnetic
fields in thin layers above and below the convection zone in the
right panel of Fig. 10. The magnetic field strength quickly de-
cays to zero in these layers, but its presence demonstrates that
the plasma is overshooting into the stable regions. Indeed, the

frozen-in magnetic field generated in the turbulent convection
zone could never be found in the stable layers without overshoot-
ing.

3.3. Velocity and magnetic fields properties

Once the simulations attain a quasi-steady magneto-convectional
state, we can infer statistical properties of the convective flows
and magnetic fields. In this section, all the results for each differ-
ent simulation represent averages over all snapshots where the
saturation phase has been reached. In particular, we consider
the last 7 snapshots for the MHD_64 simulation, the last 10 for
MHD_128, 7 for MHD_256, and 6 for MHD_512.

From a MLT perspective and assuming isotropical turbu-
lence, we can predict the vertical profile of the one-dimensional
velocity dispersion σ1D

MLT (see, e.g., Shu 1992) as,

σ1D
MLT =

(
2(γ − 1)αMLTQT

γρ̄

)1/3

, (8)

where αMLT is the mixing-length parameter1 which we fix to
αMLT = 1.0, QT is the convective flux, which we assume to be
equal to the stellar energy flux (see Sect. 2.2), and ρ̄ is the mean
density profile. Assuming quasi-equipartition, we can also pre-
dict the vertical profile of the one-dimensional magnetic field
strength as,

B1D
MLT = αB

√
4πρ̄ σ1D

MLT , (9)

where αB = Brms/Beq is the ratio between the rms magnetic field
strength and the equipartition value found in the MHD simula-
tions and shown in Tab. 2.

Figure 12 shows the vertical profiles of the rms and mean
components of the vertical and horizontal velocities, defined as

vz and vh = 1
√

2

√
v2

x + v2
y , respectively. The rms vertical velocity

grows as we approach the top of the convection zone, as pre-
dicted by MLT since the density profile decreases with z. The
maximal amplitude of the rms profile is reached just before the

1 The mixing-length parameter α is defined as the ratio between the
turbulent eddies mixing-length and the local pressure scale height.

Article number, page 8 of 15



J. R. Canivete Cuissa and R. Teyssier: Toward fully compressible MHD simulations of stellar convection with RAMSES

0.0

2.5

5.0

7.5

10.0

y
[M

m
]

0.0 2.5 5.0 7.5 10.0
x [Mm]

0.0

2.5

5.0

7.5

10.0

y
[M

m
]

4

3

2

1

0

1

2

3

4

v z
[1

06
m

s
1 ]

1.0

0.5

0.0

0.5

1.0

B
z

[1
08

G
]

Fig. 11. Horizontal sections of the vertical velocity vz (top) and vertical
magnetic field Bz (bottom) near the top of the convection zone (z =
7.40 Mm). The sections are taken from the MHD_512 simulation at t =
5 000 s.

artificial cooling layer. Near the two boundaries and in the bot-
tom stable region, the rms vertical velocity amplitude is very
weak, while in the top stable layer we see the imprints of vertical
oscillations. On the other hand, the rms horizontal velocity pro-
file peaks near the boundaries of the convection zone. At the top,
the uprising convective plumes hit the top stable layer and are
cooled down by the artificial cooling. Therefore, the plasma is
pushed horizontally towards the intergranular downflows, where
it begins its descent. In the deep convection zone, the descend-
ing cool plasma encounters the bottom stable stratification and
the artificial heating region, thus it gets heated up and it is chan-
neled horizontally into the convective cells. Moreover, we ob-
serve large amplitudes of horizontal velocities (in both rms and
mean components) in the top stable layer. These are also imprints
of waves propagating horizontally in the stable stratification.

Qualitatively, the velocity profiles are comparable to what
Viallet et al. (2013) obtained for the convective envelope of a
5M� red giant and Miesch et al. (2008), Hotta et al. (2014),
and Hotta et al. (2015) for the solar convection zone. Moreover,
in Fig. 13 we show the vertical profiles of the average three-
dimensional Mach number, M = vrms/cs, for each one of the
MHD simulations. We compare the simulated profiles to a MLT
estimate given byMMLT = σ3D

MLT/cs =
√

3σ1D
MLT/cs, where σ1D

MLT
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Fig. 12. Vertical profiles of the vertical (left) and horizontal (right) com-
ponents of the velocity field for the four MHD simulations. The rms
profiles are shown in continuous lines, while dashed lines represent the
mean profiles. Dotted vertical lines denote the boundaries of the con-
vection zone. The MLT prediction for the one-dimensional dispersion
velocity given by Eq. (8) is shown in green.
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Fig. 13. Comparison between Mach number profiles derived from the
MHD simulations and from mixing-length theory (MLT) with αMLT =
1.0. Black dotted lines denote the boundaries of the convection zone,
while the gray areas represent the artificial heating (left) and cooling
(right) regions.

is given in Eq. (8). We can once more appreciate the extreme sub-
sonic nature of the convective flows, with the maximum mean
Mach number being in the order of M ∼ 10−2 near the top of
the convection zone. In addition, we show that our code yields
satisfying results also with lower Mach numbers in Appendix A.

We find that the velocity profiles are in good agreement with
MLT theory and that they converge with resolution in the con-
vection zone. In the upper stable layer however, the Mach num-
ber profiles from the different simulations do not overlap. The
growth of kinetic energy in this layer, seen also in Fig. 12, is due
to trapped internal gravity waves. Ideally, these waves would be
free to exit the simulation box, but since the top boundary condi-
tions are fixed, the top stable layer acts as a resonant cavity. We
will explore outflow boundary conditions with proper character-
istic tracing in future work. Internal gravity waves can transport
energy at the smallest scales in the simulation (see Sect. 3.4),
therefore the better the spatial resolution, the higher the kinetic
energy that can be provided to such modes.

Figure 14 is the magnetic analog of Fig. 12. Just as for the
velocity, we define the vertical and horizontal magnetic field

components as Bz and Bh = 1
√

2

√
B2

x + B2
y . The rms magnetic

magnetic vertical profiles are reversed with respect to the ve-
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Fig. 15. Probability density functions (PDF) of the vertical (left column)
and horizontal (right column) components of the velocity field in the
four MHD simulations after reaching the quasi-steady state. The PDFs
are computed over a horizontal section at z = 7.0 Mm (top row) and at
z = 3.0 Mm (bottom row), corresponding to top and bottom convection
zone, respectively.

locity ones, as the peaks are near the bottom of the convection
zone. Similar profiles are found by Rempel (2014), Hotta et al.
(2014), and Hotta et al. (2015) for magnetic fields generated by a
small-scale dynamo in the solar convection zone. The magnetic
field profiles qualitatively follow the MLT prediction and also
converge with resolution, but the difference between the differ-
ent simulations is more noticeable. In the top and bottom sta-
ble regions the magnetic field is essentially zero apart from two
thin layers above and beneath the convection zone where, as we
have seen in Fig. 10, magnetic field is transported by overshoot-
ing convective plasma.

10 11

10 10

10 9

10 8

10 7

PD
F,

  z
=

7.
0

M
m

MHD_64
MHD_128
MHD_256
MHD_512

0.50 0.25 0.00 0.25 0.50
Bz [109 G]

10 11

10 10

10 9

10 8

10 7

PD
F,

  z
=

3.
0

M
m

0.00 0.25 0.50
Bh [109 G]

Fig. 16. Probability density functions (PDF) of the vertical (left column)
and horizontal (right column) components of the magnetic field in the
four MHD simulations after reaching the quasi-steady state. The PDFs
are computed over a section at z = 7.0 Mm (top row) and at z = 3.0 Mm
(bottom row), corresponding to top and bottom convection zone, respec-
tively.

Figure 15 shows the probability density functions (PDFs)
of the vertical and horizontal components of the velocity field
at two different heights. Near the top of the convection zone
(z = 7.0 Mm), the vertical velocity is characterized by an asym-
metric PDF, with the probability peak being at low positive val-
ues and a long tail towards strong downflows. Such a PDF stems
from the granular structure of the convective flow, where the
large and slowly uprising plumes dominate the volume but the
strongest velocities are found in the intergranular downflows.
Closer to the bottom (z = 3.0 Mm), the qualitative shape of
the vertical velocity PDF is similar, but the peak is closer to
zero and the probability of having large negative velocities is
lower. This follows from the decrease of the average rms veloc-
ities with depth due to the stellar stratification (see Fig. 12 and
Eq. 8). The horizontal velocity PDFs appear to follow a chi dis-
tribution with two degrees of freedom at both heights, because vx
and vy are Gaussian distributed. Moreover, their peaks are found
at the same values of the vertical ones. Once more, the distribu-
tion in the deep convection zone is narrower because of stellar
stratification.

The PDFs of the vertical magnetic field are shown in the
left panels of Fig. 16. The profiles are symmetric at both heights
in the convection zone, which is compatible with the origin of
these magnetic fields being due to a turbulent small-scale dy-
namo with no preferred direction. The profiles are narrower with
respect to the velocity ones, showing a higher intermittency of
the magnetic fields (Brandenburg et al. 1996). The tails are more
extended at z = 3.0 Mm since in the deeper layers of the con-
vection zone the mean magnetic field amplitude is larger (see
Fig. 14). Similar conclusions can be inferred from the right pan-
els of Fig. 16, where we show the PDFs of the horizontal mag-
netic field, Bh.

Article number, page 10 of 15



J. R. Canivete Cuissa and R. Teyssier: Toward fully compressible MHD simulations of stellar convection with RAMSES

Both in Fig. 15 and Fig. 16 the PDFs appear to converge with
resolution. Moreover, qualitatively similar results have been ob-
tained by Browning et al. (2004), Miesch et al. (2008), Rempel
(2014), Hotta et al. (2014), and Hotta et al. (2015) in the con-
text of solar convection. This validates our numerical treatment
of magneto-convection flows with a very different code.

3.4. Waves

Our fully compressible approach allows us to study the excita-
tion and propagation of acoustic (or pressure) waves, in addition
to internal gravity waves. Therefore, in order to characterize the
oscillatory phenomena visible in the stable regions above and be-
low the convection zone in both hydrodynamical and MHD sim-
ulations (see Fig. 2 and Fig. 10), we performed a Fourier anal-
ysis on a time series of Ns = 9 000 snapshots of a horizontal
section of the vertical velocity vz taken at z = 8.5 Mm, that is
in the top stable layer and ∼ 0.7 Mm above the convection zone.
We used the simulations HD_256 and MHD_256 and we started
the analysis at t = 5 000 s in both cases. The sampling rate is
∆ts = 0.5 s, hence we cover a frequency domain ranging from
ωmin = 2π/T = 1.40 × 10−3 Hz, where T = Ns∆ts = 4 500 s, to
the Nyquist frequency ωNyquist = π/∆ts = 6.28 Hz. The horizon-
tal wavenumber instead, which we define as k2

h = k2
x + k2

y , ranges
from kh,min = 5.71 × 10−1 Mm to kh,Nyquist = 73.1 Mm given the
resolution and the size of the box. Before performing a Fourier
transform over the time sequence, we apodized the data by a
cosine-bell function to avoid artifacts coming from the nonperi-
odicity of the signal. We did not need to apply the same proce-
dure for the spatial Fourier transform since the lateral boundaries
of the box are periodic.

The results of the Fourier analysis performed over the hydro-
dynamical simulation HD_256 and MHD simulation MHD_256
are presented as diagnostic diagrams, or kh-ω diagrams, in
Fig. 17. In such diagrams, a single wave form would appear as a
dark spot at the relative frequency ω and horizontal wavenumber
kh, while more complex oscillations and mode families can give
rise to rays or ridges. In a stratified, compressible medium, the
behavior of a generic wave is characterized by the local disper-
sion relation (see, e.g., Priest 2014),

k2
z =

(ω2 − ω2
ac)

c2
s

−
(ω2 − N2

BV)k2
h

ω2 , (10)

where kz is the vertical wavenumber and cs is the sound speed.
The acoustic cutoff frequency ωac (see, e.g., Deubner & Gough
1984) and the Brunt-Väisälä frequency NBV are defined as,

ω2
ac =

c2
s

4H2
ρ

(
1 − 2

dHρ

dz

)
, (11)

N2
BV = g

(
1

Hρ
−

1
γHp

)
, (12)

where Hρ and Hp are the density and pressure scale heights, re-
spectively. The solutions of setting k2

z = 0 in Eq. (10) separate
two domains where waves can propagate (k2

z > 0) and one re-
gion where waves are evanescent (k2

z < 0). For kh > 1/(2Hρ), the
boundaries in the frequency domain between propagating and
evanescent regions can be approximated by the Brunt-Väisälä
frequency at the lower boundary and by the dispersion relation
for sound waves in a homogeneous, compressible medium ω =
cskh for the upper boundary. In our case, 1/(2Hρ) ∼ 0.5 Mm−1,

so this approximation is valid for most of the parameter space
displayed in Fig. 17. In the same figure, we show these two rela-
tions as dash-dotted and dashed lines, respectively, where cs and
NBV are computed using our equilibrium profiles. Moreover, we
also show the dispersion relation for surface gravity waves ( f -
modes), ω =

√
gkh, with a dotted line. For more details on the

local dispersion relation of waves in a gravitationally stratified
background, the reader can refer to Vigeesh et al. (2017).

The two panels of Fig. 17 appear very similar qualitatively.
In both cases, we observe several different modal components.
Gravity-modified pressure waves (p-modes) are responsible for
the signal in the top left of both panels, that is above the ω = cskh
relation. At the top of the diagram we observe a reflection of
the signal due to an aliasing phenomenon, also reported by Her-
wig et al. (2006). Individual ridges due to internal gravity waves
(g-modes) can be observed at small horizontal wavenumbers
(kh . 3 Mm−1) and just below the Brunt-Väisälä frequency,
while at smaller scales they cannot be resolved individually and
give rise to a horizontal band along ω = NBV. The g-modes are
excited by the convective plumes perturbing the stratified plasma
in the stable region, while p-modes are mainly produced and
propagate within the convective region. The result is a horizon-
tal flow with an oscillatory component (g-modes), that resem-
ble waves at the surface of the see, and the propagation of an
over-pressure in the stable layers (p-modes). The turbulent con-
vective noise is responsible for the strong smeared signal in the
bottom left of both panels which extends through the evanes-
cent zone. This shows once more that the convective flow is able
to overshoot into the stable layers and there perturb vertically
the plasma. Similar results have been obtained by Herwig et al.
(2006) for the same hydrodynamical setup as used here and by
Meakin & Arnett (2007) for an oxygen shell burning 23 M� stel-
lar model.

To better expose the difference between the two plots of
Fig. 17, we show in Fig. 18 the power averaged over the hori-
zontal wavenumber kh, 〈v̂z〉k (left), and over the frequency ω,
〈v̂z〉ω (right), for both simulations. The curves are in both pan-
els qualitatively similar, but the hydrodynamical simulation dis-
play slightly higher values. The two peaks at low frequency
(ω ∼ 0.1 Hz and ω ∼ 1 Hz) correspond to the convective
noise signal and to the g-mode ridge visible in Fig. 17. The lo-
cal crest at high frequency (ω ∼ 5.5 Hz) corresponds to the p-
modes signal, while the single peak at low horizontal wavenum-
ber (kh ∼ 2Mm−1) is mainly due to the convective noise signal.

The bottom panels of Fig. 18 show the relative difference be-
tween the two curves computed as,

Difference =
〈v̂z〉

MHD
i − 〈v̂z〉

HD
i

〈v̂z〉
HD
i

, (13)

where i = kh, ω, respectively. We see that waves in the MHD_256
simulation have, in average, less power than in HD_256 for all
frequencies and horizontal wavenumbers. In total, the relative
difference between the two is −11.5 %. By using the Brunt-
Väisäla frequency and the sound waves dispersion relation to
separate the different contributions, we identify a deficit of
13.1% in power related to internal gravity waves and 16.3% to
acoustic waves. Moreover, the relative difference varies with ω
and kh. We can identify two dips of ∼ −20 % in the left plot:
one at very low and another one at large frequency. The first one
(ω ∼ 0.1 Hz) is related to the convective noise signal, which ap-
pear to be stronger in the hydrodynamical simulation, while the
second one (ω ∼ 5.5 Hz) refers to the p-modes signal. If the first
dip can be easily explained with the difference of convective ki-

Article number, page 11 of 15



A&A proofs: manuscript no. AA_2021_42754

10 20 30 40 50 60 70
kh [Mm 1]

1

2

3

4

5

6

[H
z]

HD_256  [cm2]

= cskh

= gkh

= NBV

10 20 30 40 50 60 70
kh [Mm 1]

MHD_256  [cm2]

106

107

108

109

1010

1011

Fig. 17. Wave diagnostic diagrams, also knows as kh-ω diagrams, for the HD_256 (left) and MHD_256 (right) simulations at z = 8.5 Mm. The
sampling rate and grid cell size are ∆ts = 0.5 s and ∆x = 42.0 km, respectively. The strength of the signal is color-coded. The dispersion relations
for sound waves and surface modes are shown in dashed and dotted lines, respectively. The Brunt-Väisälä frequency is depicted by a dash-dotted
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Fig. 18. Comparison between the mean power as a function of fre-
quency ω (left) and of horizontal wavenumber kh (right) for the HD_256
and MHD_256 simulations at z = 8.5 Mm. The bottom panels show the
relative difference between the two signals in percentage. The green
dashed line shows a smoothed interpolation of the data points.

netic energy between the two simulations due to the feedback of
magnetic fields (see Fig. 8 and Fig. 9), the deficit associated with

p-modes is not necessarily expected. Although the power associ-
ated with pressure waves scales with the eight power of the char-
acteristic turbulent velocity (Lighthill 1952), magneto-acoustic
waves can be excited by means of Lorentz forces. Therefore, the
loss in power due to a lower turbulent velocity could be compen-
sated by the action of the magnetic fields. The two smallest dif-
ferences are found in correspondence with the peak of g-modes
(ω ∼ 1 Hz) and around ω ∼ 2 Hz, where the MHD run display
a small bump associated with a slightly stronger signal in the
evanescent region. This signal is mysterious in origin and we
speculate could be caused by the magnetic fields in the top con-
vection zone.

A detailed analysis of the causes behind these differences are
beyond the scope of this paper. However, there are clear hints
indicating the impact of magnetic fields on the generation and
propagation of wave modes in the upper stable layer.

4. Summary and conclusions

In this paper we presented a proof of concept for three-
dimensional, fully compressible, numerical simulations of
magneto-convection in a Cartesian grid with the RAMSES code.
In order to deal with low-Mach number and low-amplitude fluc-
tuations typical of convective motions, we adapted the numerical
solvers of RAMSES by implementing a well-balanced scheme.

We ran hydrodynamical and MHD simulations of a He shell
flash convective envelope model with different resolutions, rang-
ing from N = 643 to N = 5123. A turbulent convection zone nat-
urally develops from random perturbations in the initial density
profile, and the emerging rms velocity field is compatible with
MLT predictions. In the Appendix A we show that our code is
able to deal with flows characterized by Mach numbers as low as
M ∼ 10−3. We note that, in principle, our well-balanced scheme
allows to model even lower Mach number flows. The only limi-
tation regards the computational cost. Indeed, as we lower the
characteristic convective velocity of the simulation, we lower
the time-step as well because of the Courant condition. Regard-

Article number, page 12 of 15



J. R. Canivete Cuissa and R. Teyssier: Toward fully compressible MHD simulations of stellar convection with RAMSES

ing the MHD simulations, a turbulent small-scale dynamo effec-
tively amplifies a weak seed magnetic field up to ∼ 18 − 37 %
of the equipartition value depending on the resolution. Once sat-
urated, the magnetic fields dominate the dynamics of the con-
vection zone at small scales. In the two stable layers, we saw
indications of convective overshoot and we identified propagat-
ing pressure and internal gravity waves.

The resulting properties of the convection region and of the
magnetic fields converge by increasing the simulation resolution,
as we can see from the power spectra analysis (Figs. 6 and 9),
from the vertical profiles (Figs. 12 and 14), and from the PDF
distributions (Figs. 15 and 16) of velocity and magnetic fields. In
particular, we observe an almost statistically equivalent result for
the velocity field for the resolutions N = 1283, 2563, and 5123,
while the difference is more pronounced regarding the magnetic
fields. In both cases, the low-resolution run (N = 643) presents
important departures from the expected results and it is there-
fore insufficient to capture the magneto-convective dynamics of
this setup. Indeed, the low-resolution run resolves the minimum
pressure scale heights ( Hmin

p ∼ 0.7 Mm ) with only ∼ 4-5 grid-
cells, which is not sufficient for an (magneto-)hydrodynamical
code. We recall that RAMSES employs a second-order numer-
ical scheme in both hydrodynamical and MHD solvers. Using
a higher-order scheme could improve the results even at low-
resolutions. Only for the velocity field in the top stable layer we
do not observe a convergence with resolution (see Figs. 12 and
13). There, the fixed top boundary condition creates a resonant
cavity which traps the waves generated at the interface with the
convection zone. A more realistic treatment of the boundary con-
ditions will address this problems in future works.

Qualitatively, we find similar results to several other stud-
ies on convection and magneto-convection. Our results differ
from the two-dimensional simulations obtained by Herwig et al.
(2006) with the same initial model. The reason for this discrep-
ancy is the artificial cooling layer that we introduced at the top of
the convection zone to mimic radiative losses. Indeed, the cool-
ing layer causes the intergranular downflows which drive the
convective motions in our simulations (see Fig. 2), whereas in
Herwig et al. (2006) convection is induced by hot upflow fingers
generated in the heated bottom layers. This explains why our
results are more similar to surface solar convection simulations
(see, e.g., Rempel 2014; Hotta et al. 2014, 2015) than to core
convection simulations (see, e.g., Browning et al. 2004; Brun
et al. 2005). In any case, our goal was not to reproduce realistic
results regarding a particular stellar convection scenario, but to
demonstrate the feasibility of simulating three-dimensional com-
pressible magneto-convection with the RAMSES code, and in
that respect we consider the proof of concept successful.

The analysis carried out with respect to the propagation of
oscillations in the stable region above the convection zone re-
vealed a deficit of power in the magneto-hydrodynamical simu-
lation. In particular, because of our fully compressible approach,
we could measure a deficit of 16.3% in power associated with
pressure waves. This difference with respect to the purely hy-
drodynamical case cannot be readily explained by the reduc-
tion of convective kinetic energy due to a small-scale dynamo
action in the MHD simulation. Indeed, magnetic fields ampli-
fied by the same small-scale dynamo can also be sources of
magneto-acoustic waves. Therefore, we provide clear indica-
tions that magnetic fields play a non trivial and important role
in the excitation and propagation of acoustic waves in stellar in-
teriors.

In the future, we aim to expanding our methodology to global
models of stellar magneto-convection. In particular, we are inter-

ested in the propagation of waves within stars. Our compressible
approach, similarly to Horst et al. (2020), allows for the cor-
rect treatment of both pressure and internal gravity modes ex-
cited by the convective motions. However, the coupling between
magnetic fields and these oscillations is of particular interest
for asteroseismological observations. For example, the magnetic
greenhouse effect could trap wave-modes in the core and there-
fore suppress dipole oscillations (Fuller et al. 2015; Stello et al.
2016). Magneto-hydrodynamical numerical simulations of fully
compressible convection, such as the ones presented in this pa-
per, represent a viable solution to study these phenomena.

The price to pay though is the high computational cost re-
quired. Indeed, the MHD_512 simulation required 2.5×106 core h
with 4 608 cores to run for 6 300 s physical time, while for
the MHD_256 simulation we used 1 152 cores and a total of
1.7 × 105 core h to simulate 9 000 s physical time. That corre-
sponds approximately to 6 and 9 convective turnovers times, re-
spectively. Horst et al. (2020) estimate a need of 44 × 106 core h
to simulate a full 3 M� stellar model for 700 h physical time
(∼ 17 convective turnover times) on a spherical grid of size
960 (r) × 360 (ϑ) × 720 (ϕ) with the compressible Seven-League
Hydro (SLH) code (Miczek 2013). Our MHD simulations on a
Cartesian grid would increase the computational time cost re-
quired, because of the higher number of degrees of freedom
and because of the higher resolution needed given the geom-
etry of the grid. However, even taking into account the extra
costs, we estimate our numerical simulations to be rather com-
petitive. Moreover, the AMR capabilities of the RAMSES code
could help to reduce this gap. Another possibility is to alleviate
the stringent time-step constraints imposed by the highly sub-
sonic convective flow using the reduced speed of sound tech-
nique (Rempel 2005; Hotta et al. 2015).

An area of improvement concerns energy conservation. As
stated in Sect. (2.1), we solve for the conservation of specific en-
tropy instead of total energy, since entropy is the fundamental
quantity governing the dynamics of convectively unstable sys-
tems. However, this choice implies that energy conservation is
not ensured by the numerical scheme. A direct consequence is
that the numerical energy flux in the convection zone is larger
than the theoretical one by tens of percent. We believe that, in
the future, this problem can be addressed by employing higher-
order schemes to solve for the total energy conservation and at
the same time accurately capturing the dynamics of low ampli-
tude entropy perturbations. Moreover, we plan to improve our
simulation setup by avoiding discontinuities in the heating and
cooling functions as well as in the equilibrium profiles. These
discontinuities are sources of truncation errors that can lead to
spurious energy fluxes.

In conclusion, we proved the feasibility of three-
dimensional, fully compressible numerical simulations of
magneto-convection in the low-Mach number regime with the
RAMSES code. This allowed us to study the self-consistent am-
plification of magnetic fields in stellar convection zones together
with their interaction with the generation and propagation of
pressure and internal gravity waves in the adjacent stellar cores,
radiative zones, or stellar atmospheres.
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Appendix A: Low-Mach number simulations
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Fig. A.1. Time evolution of the mean turbulent kinetic energy den-
sity EK in the convection zone for simulations with nominal (L =
3.21 × 107 L�, blue) and low (L = 3.21 × 104 L�, purple) stellar lu-
minosities. The convective time scales are assumed to be τconv = 1 000 s
for the nominal simulations (see Eq. 7) and τconv = 10 000 s for the low
luminosity ones.
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Fig. A.2. Mach number profiles derived from the nominal and low lu-
minosity simulations. MLT predictions with αMLT = 1.0 are shown for
both scenarios. Black dotted lines denote the boundaries of the convec-
tion zone, while the gray areas represent the artificial heating (left) and
cooling (right) regions.

In this appendix, we demonstrate that our fully compressible
approach is able to deal with low-Mach number flows. For this
purpose, we lower the volumetric heating and cooling rates of
the model presented in Sect. 2.2. Doing so, we reduce the stellar
energy flux and luminosity, and consequently also the character-
istic convective velocity and typical Mach number.

We adjusted the volumetric heating and cooling rates so that
the stellar luminosity reaches L = 3.21 × 104 L�, which is 103

times lower than the nominal value used in this paper. According
to MLT theory and Eq. (8), the characteristic convective velocity
is reduced by a factor 10. We ran magneto-hydrodynamical sim-
ulations with both nominal and low luminosity setups with reso-
lutions N = 643, 1283, and 2563. We also reduced the amplitude
of the initial random density perturbations δρ to δρ/ρeq ∼ 10−5.
We ran the different simulations for 2.5 convective time scales,
which corresponds to 2 500 s physical time for the nominal lu-
minosity simulations and 25 000 s for the low luminosity ones.

Figure A.1 shows the time evolution of the mean turbulent
kinetic energy for both nominal and low luminosity simulations.
We see that the nominal luminosity runs quickly reach a quasi-

steady state around EK ∼ 1016 erg cm−3, just as in Fig. 4. There-
fore, the amplitude of the initial perturbations does not affect the
properties of convection. The low luminosity simulations instead
all stabilize around EK ∼ 1014 erg cm−3. This value validates the
MLT prediction of a reduction of convective velocities by a fac-
tor ∼ 10.

In Fig. A.2 we plot the mean Mach number profiles for the
six simulations. We used outputs from the last 1.5 τconv of each
simulation to compute the mean profiles, so that the quasi-steady
state is already attained. The nominal luminosity ones are very
similar to the ones shown in Fig. 13, while the low ones only
reachM ∼ 10−3 in the convection zone. In both cases the sim-
ulations are in good agreement with the MLT theory and the re-
sults converge with resolution in the convection zone.

In conclusion, we proved that the well-balanced version of
the RAMSES code presented in this paper is able to simulate
low-Mach number (magneto-)convection, down to M ∼ 10−3.
Moreover, we have shown once more the good agreement be-
tween our numerical simulations and MLT predictions.
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